Surface composition determines temperature and therefore habitability of a planet

Watts Up With That?

Astronomers from KU Leuven, Belgium, have shown that the interaction between the surface and the atmosphere of an exoplanet has major consequences for the temperature on the planet. This temperature, in turn, is a crucial element in the quest for habitable planets outside our Solar System.

The figures show the wind, temperature, and surface-atmosphere friction on a planet 1.45 times the size of the Earth in a 1-day orbit around an M dwarf. The two topmost figures show the wind and the temperature in the upper layers of the atmosphere. The two figures in the middle show the wind and the temperature on the surface of the planet. On the left-hand figures, the surface-atmosphere friction equals that on Earth. On the right-hand figures, there is ten times as much friction between surface and atmosphere than is the case on Earth. Both scenarios have a different impact on the climate of a planet: the climate represented in the right-hand figures is more habitable. CREDIT KU Leuven - Ludmila Carone and Leen Decin The figures show the wind, temperature, and surface-atmosphere friction on a planet 1.45 times the size of the Earth in a 1-day orbit around an M dwarf. The two topmost figures show the wind and the temperature in the upper layers of the atmosphere. The two figures in the middle show the wind and the temperature on the surface of the planet. On the left-hand figures, the surface-atmosphere friction equals that on Earth. On the right-hand figures, there is ten times as much friction between surface and atmosphere than is the case on Earth. Both scenarios have a different impact on the climate of…

View original post 461 more words

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s